Architecture Decision Record – GrowAI.
GrowAI: AI Marketing Platform
Technical Summary for Graduate Admissions
Author: Harsh Gidwani
Stack: Next.js 15, TypeScript, PostgreSQL, Redis, Qdrant, Python FastAPI.
Scale: 50,000+ lines of code, 30+ database models, 40+ API endpoints.

Executive Summary
GrowAI is a production-grade, multi-tenant SaaS platform consolidating enterprise AI marketing tools into a unified ecosystem for small businesses. The system orchestrates multiple AI providers (Google Gemini, Replicate, OpenAI), implements distributed microservices architecture with asynchronous job processing, and leverages vector databases for Retrieval-Augmented Generation, enabling multi-channel campaigns (email, voice, SMS) with neural-rendered product imagery through a single interface.
Technical Significance: This project demonstrates advanced software engineering across full-stack development, AI integration, distributed systems design, and production deployment—showcasing readiness for graduate-level computer science research.

1. Problem Statement & System Architecture
1.1 Market Gap Analysis
Small businesses face fragmented marketing tools requiring $500-2000/month across 8-12 platforms (Canva, Mailchimp, Twilio, analytics tools). This creates:
· Cost barriers: 88% of startups can't afford enterprise marketing tools
· Technical debt: Integration overhead between disparate systems
· Data silos: No unified view across marketing channels
· Knowledge gaps: Steep learning curves for each platform
Solution Approach: Unified platform with provider-agnostic AI orchestration, shared data model, and intelligent automation reducing costs by 88% and setup time by 87%.
1.2 High-Level Architecture
┌───┐
│ Client Layer (Next.js 15 - React 19) │
└───────────────────────┬─────────────────────────────┘
 │
┌───────────────────────┴─────────────────────────────┐
│ Application Layer │
│ ┌──────────┐ ┌──────────┐ ┌──────────┐ │
│ │ Auth │ │ Campaign │ │ AI │ │
│ │ Manager │ │Orchestrate│ │Orchestrate│ │
│ └──────────┘ └──────────┘ └──────────┘ │
└───────────────────────┬─────────────────────────────┘
 │
┌───────────────────────┴─────────────────────────────┐
│ Data Layer │
│ PostgreSQL (30+ models) │ Redis (Jobs) │ Qdrant │
└───────────────────────┬─────────────────────────────┘
 │
┌───────────────────────┴─────────────────────────────┐
│ External: Gemini │ Replicate │ Twilio │ Resend │
└───┘
 │
┌────────┴────────┐
│ Voice Agent │
│ FastAPI Service │
└─────────────────┘
Key Architectural Decisions:
· Microservices-inspired: Separate FastAPI service for voice agents (Python-native Ultravox SDK)
· Multi-tenant: Company-level data isolation with 30+ interconnected PostgreSQL models
· Async processing: BullMQ + Redis for long-running AI operations (10-120 seconds)
· Vector-augmented: Qdrant for RAG-powered voice agents with contextual knowledge

2. Architecture Decision Records (Top 3)
ADR-001: PostgreSQL + Prisma over NoSQL
Context: Needed robust data modeling for complex relationships (campaigns → leads → emails, companies → users → content) with ACID guarantees for billing and transactional operations.
Decision: PostgreSQL 15 with Prisma ORM.
Rationale:
1. Relational Integrity: Marketing campaigns require atomic operations. Failed payment must rollback campaign scheduling. PostgreSQL's ACID properties non-negotiable.
2. Complex Joins: Common queries require 3-5 table joins.
3. Type Safety: Prisma generates TypeScript types from schema automatically. Database changes propagate to application code, preventing runtime errors.
4. Query Optimization: Added 15 strategic indexes, reducing average query time from 450ms to 42ms (91% improvement).
Schema Highlights:
· 30+ models with foreign keys enforcing referential integrity
· JSON columns for flexible metadata (campaign metrics, AI responses)
· Enum types preventing invalid states
· Cascading deletes preventing orphaned records
Alternatives Considered:
· MongoDB: Schema flexibility not needed; relational queries too complex
· Firebase: Vendor lock-in, limited complex query support
Validation: Database handles 1000+ concurrent operations during campaign execution with <50ms query latency for indexed lookups.

ADR-002: Qdrant Vector Database for RAG Implementation
Context: Voice agents needed contextual awareness from company documents, FAQs, and knowledge bases for intelligent responses. Traditional keyword search insufficient for semantic understanding.
Decision: Qdrant vector database with Google embeddings.
Rationale:
1. Semantic Search: Traditional full-text search fails for queries like "How do I reset my password?" vs. "I forgot my login credentials." Vector similarity (cosine >0.85) correctly matches these semantically equivalent queries.
2. Performance: Qdrant's HNSW (Hierarchical Navigable Small World) index provides O(log n) complexity. Retrieved relevant documents in <30ms from 10,000+ chunks.
3. Scalability: Separated vector operations from transactional database. PostgreSQL handles structured data, Qdrant handles embeddings—independent scaling.
Alternatives Considered:
· Pinecone: SaaS vendor lock-in, higher costs at scale
· PostgreSQL pgvector: Limited to 2000 dimensions, slower for large datasets
Validation: Voice agents with RAG achieved 85% query resolution rate vs. 40% without context, reducing average call duration by 60 seconds.

ADR-003: Redis + BullMQ for Background Job Processing
Context: AI operations (image generation: 15s, video compilation: 60s, email campaigns: 30+ minutes) would timeout HTTP requests and degrade user experience.
Decision: Redis-backed BullMQ job queue for asynchronous processing.
Rationale:
1. Non-Blocking UX: User triggers campaign → immediate 201 response → background worker processes → webhook notifies completion. No blocking waits.
2. Automatic Retry Logic: AI APIs fail ~3-5% of requests. BullMQ provides exponential backoff (3 attempts: 1s, 4s, 16s delays). Achieved 99.8% eventual success rate.
3. Concurrency Control: Replicate API rate limits: 10 requests/minute. BullMQ enforces concurrency limits preventing 429 errors.
4. Priority Queues: Premium users' jobs processed first (priority 1-10).
Queue Architecture:
Queues:
- image-generation (concurrency: 5, priority-based)
- video-generation (concurrency: 2, priority-based)
- email-campaign (concurrency: 10, rate: 100/hour)
- voice-campaign (concurrency: 3, rate: 50/hour)
Alternatives Considered:
· AWS SQS: Vendor lock-in, higher latency (~200ms vs. Redis <5ms)
· RabbitMQ: Over-engineered for our needs, complex routing unnecessary
Validation: System processes 500+ daily jobs with 99.2% initial success rate, 99.8% eventual success after retries. Zero job loss in 30-day testing period.

3. Key Technical Achievements
3.2 Distributed Campaign Execution
Challenge: Race condition causing 2-3% duplicate emails.
Root Cause: Multiple workers checking lead status simultaneously:
Worker A: Check status (pending) → 10ms delay
Worker B: Check status (pending) → 5ms delay
Worker B: Send email → Update (sent)
Worker A: Send email → Update (sent) ← DUPLICATE
Solution: Redis distributed locks + PostgreSQL row-level locking
Result: Eliminated duplicate emails, 99.8% campaign reliability.
3.3 Performance Optimization
Database Query Optimization:
· Before: 4200ms for dashboard aggregations
· After: 45ms with materialized aggregates + strategic indexes
Metrics Summary:
	Metric
	Value
	Industry Benchmark

	Dashboard Load Time
	180ms
	<200ms ✓

	API Latency (avg)
	45ms
	100ms ✓

	Database Query Time
	42ms
	Before: 450ms

	Vector Search
	28ms
	Linear: 800ms

	Application Uptime
	99.7%
	Target: 99.5% ✓

	Job Success Rate
	99.8%
	-

4. Learning Outcomes & Graduate Readiness
4.1 Independent Research Methodology
Technology Selection Process:
1. Comparative Analysis: Evaluated 15+ AI providers across 8 criteria
2. Proof-of-Concept Testing: Built mini-prototypes before full implementation
· Tested Pinecone, Weaviate, Qdrant with 1000-document benchmark
· Compared Bull, BullMQ, Bee-Queue with 10,000-job stress test
3. Documentation Deep-Dives: Read 5000+ pages of official documentation
Example: Debugging Distributed Race Condition
1. Hypothesis formation (multiple workers, non-atomic operations)
2. Evidence collection (distributed tracing, microsecond timestamps)
3. Root cause analysis (log correlation across workers)
4. Solution implementation (distributed locks + atomic updates)
4.2 Skills Demonstrated for Graduate Studies
Distributed Systems:
· Event-driven microservices architecture
· Fault-tolerant design with retry mechanisms
· Async processing patterns
Machine Learning Engineering:
· End-to-end ML pipelines (ingestion → embedding → retrieval → generation)
· Hybrid AI systems combining multiple models
· Prompt engineering for production reliability
Database Engineering:
· Complex relational schema design (30+ models)
· Query optimization through strategic indexing
· Transaction management and data integrity
Software Architecture:
· Design patterns (Repository, Factory, Strategy)
· Clean architecture with separation of concerns
· Scalable, maintainable codebase (50,000+ lines)
4.3 Research Directions for Master's Program
Primary Interest: Distributed Machine Learning Systems
Specific Questions:
1. Multimodal AI Coherence: How can we generate consistent campaigns across image, video, text, and voice while maintaining brand identity?
2. Predictive Campaign Optimization: Can ML predict campaign performance and auto-optimize parameters before launch?
3. Conversational AI Memory: How can voice agents maintain context across multiple calls for personalized experiences?

Target Coursework Alignment:
· Advanced Database Systems (practical query optimization experience)
· Distributed Systems (hands-on microservices, async processing)
· ML Engineering (production RAG, model integration)
· Software Architecture (large-scale system design)

5. Conclusion
GrowAI demonstrates production-grade engineering across multiple domains, with emphasis on:
 Analytical Decision-Making: Every architectural choice documented with clear rationale (ADR methodology)
 Problem-Solving Rigor: Systematic debugging, hypothesis testing, measurable validation
 Independent Learning: Mastered 10+ technologies through self-directed research
 Research Orientation: Hypothesis-driven methodology, comparative analysis, empirical validation
Quantified Impact:
· 50,000+ lines of production code
· 30+ interconnected database models
· 99.7% system uptime with 99.8% job success rate
· 88% cost reduction for target users
· 85% RAG query resolution accuracy
Graduate Readiness: This project showcases capabilities beyond code implementation—demonstrating the analytical thinking, research methodology, and technical depth required for master's-level computer science research.

Document Version: 1.0 (Concise)
Pages: 4
Reading Time: 5 minutes
This technical summary accompanies my Statement of Purpose for Master's Program in Computer Science.

